Formal Introduction to Spectral Risk Measures

Stephen J. Mildenhall May 2018

School of Risk Management

Section 1: Definition and Examples of Risks Measures

Risk Measures: Definition

A risk measure ρ associates a monetary amount $\rho(X)$ with a random financial outcome X so that

prefer
$$X$$
 to $Y \Longleftrightarrow \rho(X) \leq \rho(Y)$

- Risk measure $\rho(X)$ represents
 - The assets required to credibly promise to pay X or
 - A financial measure of the **pain** suffered by assuming X
- Insurance view: **bigger** $\rho(X)$ corresponds to **greater** *risk*

Risk Measures: Warning

Generally accepted usage means

- A risk measure determines assets and not capital
- A risk measure is not a measure of economic capital
- The risk of a certain liability with present value of *a* is *a* even though the economic capital is zero

Value at Risk (VaR)

- $\operatorname{VaR}_p(X)$ = percentile = $F^{-1}(p)$ = quantile = q(p)
 - p close to 1 worst for losses
 - Advantages: always finite
 - Disadvantages: dodgy with respect to diversification

Value at Risk (VaR)

- VaR_p(X)= percentile = $F^{-1}(p)$ = quantile = q(p)
 - p close to 1 worst for losses
 - Advantages: always finite
 - Disadvantages: dodgy with respect to diversification
- $\mathrm{VaR}_p(X)$ is the $N(1-p)\mathrm{th}$ largest observation from a sample of N simulated events

Tail VaR (TVaR)

- $\mathsf{TVaR}_p(X) = \mathsf{conditional} \text{ average of the worst } 1-p \text{ outcomes}$
 - $=\frac{1}{1-p}\int_{p}^{1}q(p)dp$
 - p close to 1 worst for losses
 - p=0 corresponds to expected loss
 - p=1 corresponds to least upper bound of losses
 - Advantages: respects diversification
 - Disadvantages: not always finite
- Also known as ES, AVaR, CVaR, CTE; there are some technical differences for non-continuous X

Tail VaR (TVaR)

- $\mathsf{TVaR}_p(X) = \mathsf{conditional} \text{ average of the worst } 1-p \text{ outcomes}$
 - $=\frac{1}{1-p}\int_{p}^{1}q(p)dp$
 - p close to 1 worst for losses
 - p=0 corresponds to expected loss
 - p=1 corresponds to least upper bound of losses
 - Advantages: respects diversification
 - Disadvantages: not always finite
- Also known as ES, AVaR, CVaR, CTE; there are some technical differences for non-continuous X
- $\mathsf{TVaR}_p(X)$ is the average of the largest $N(1-p)\mathsf{th}$ observations from a sample of N simulated events

Section 2: Distortion Function and Spectral Measures Recap

Simplifying idea

- Break pricing problem into sub-problems of pricing thin layers
- Add!

Simplifying idea

- Break pricing problem into sub-problems of pricing thin layers
- Add!

Why simplifying?

- Thin layers only have total losses, no partial losses
- Risk of thin layer completely described by one number, called
 - Exceedance probability (EP) S, or
 - Probability of attachment, or
 - Expected loss (EL)

Linking risk and price

- Price of thin layer therefore also described by one number, called
 - Rate-on-line (ROL), or
 - Risk adjusted or distorted probability, or
 - State-price

Linking risk and price

- Price of thin layer therefore also described by one number, called
 - Rate-on-line (ROL), or
 - Risk adjusted or distorted probability, or
 - State-price
- Distortion function $g: {\rm thin}\ {\rm layer}\ {\rm risk}\mapsto {\rm price}\ {\rm captures}\ {\rm relationship}\ {\rm between}\ {\rm risk}\ {\rm and}\ {\rm price}$
 - g is a function $[0,1] \rightarrow [0,1]$
 - Risk averse implies $g(s) \geq s$ for all $s \in [0,1]$

Distortion Function to Risk Measure

- Associate a risk measure ρ_g to a distortion function g by analogy with $\mathsf{E}(X)$

$$E(X) = \int_0^\infty S(x)dx$$
$$= \int_0^\infty x f(x)dx$$
$$= \int_0^1 F^{-1}(p)dp$$

Distortion Function to Risk Measure

- Associate a risk measure ρ_g to a distortion function g by analogy with $\mathsf{E}(X)$

$$\begin{split} \mathsf{E}(X) &= \int_0^\infty S(x) dx \qquad \qquad \rho_g(X) = \int_0^\infty g(S(x)) dx \\ &= \int_0^\infty x f(x) dx \qquad \qquad = \int_0^\infty x g'(S(x)) f(x) dx \\ &= \int_0^1 F^{-1}(p) dp \qquad \qquad = \int_0^1 F^{-1}(p) g'(1-p) dp \end{split}$$

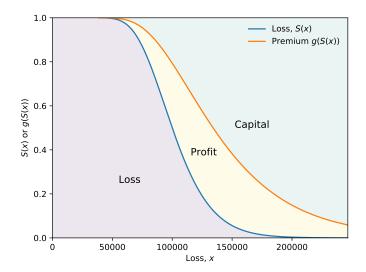
Distortion Function to Risk Measure

- Associate a risk measure ρ_g to a distortion function g by analogy with $\mathsf{E}(X)$

$$\begin{split} \mathsf{E}(X) &= \int_{0}^{\infty} S(x) dx & \rho_{g}(X) = \int_{0}^{\infty} g(S(x)) dx \\ &= \int_{0}^{\infty} x f(x) dx & = \int_{0}^{\infty} x g'(S(x)) f(x) dx \\ &= \int_{0}^{1} F^{-1}(p) dp & = \int_{0}^{1} F^{-1}(p) g'(1-p) dp \end{split}$$

• Function g' on lower right measures care/care-more along the risk spectrum p, hence **spectral risk measure**

Total Risk: Summing Over Thin Layers Using g(S(x))



Beware...

$$\int_0^\infty x f(x) dx = \int_0^\infty S(x) dx$$

But. . . generally for $0 < a < \infty$

$$\int_0^a x f(x) dx \neq \int_0^a S(x) dx$$

- The right hand side includes a full limit loss
- The left hand side does not

Section 3: Properties of Risks Measures

Property	Meaning		
Translation invariance	adding cash exactly lowers risk		
Monotone	more loss \implies more risk		
Positive homogeneous	scale irrelevant; subtle and insidious		
Sub-additive	mergers do not increase risk		
Law invariant	risk only depends on loss, not cause		
Comonotonic additive	no diversification \Longrightarrow no diversification credit		

- Coherent means all of
 - Translation invariant
 - Monotone
 - Positive homogeneous
 - Sub-additive

- Coherent means all of
 - Translation invariant
 - Monotone
 - Positive homogeneous
 - Sub-additive
- Convex
 - Coherent without positive homogeneity (better)
 - Risk of weighted average \leq weighted average of risk

See Appendix A for details

Properties of Distortion Functions

Correspondence between properties of ρ_q and g

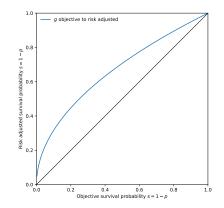
Property of ρ_g	Property of g	
Translation invariance	g(0) = 0, g(1) = 1	
Monotone	g is increasing	
Positive homogeneous	True for all g	
Sub-additive	g is concave	
Law invariant	True for all g	
Comonotonic additive	True for all g	

Correspondence between properties of ho_g and g

- g is concave (blue)
 - bows up above diagonal
 - g' decreasing
 - care-less about smaller, higher probability, losses
- g'(1-p) is the state price density of the p = F(x) percentile loss,

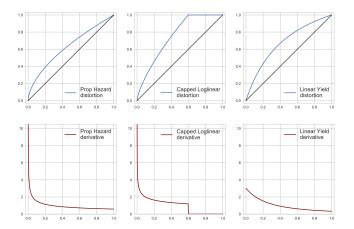
$$\rho_g(X) = \int x g'(S(x)) f(x) dx$$

 g maps EL to ROL, objective probability to risk adjusted probability, "P to Q"

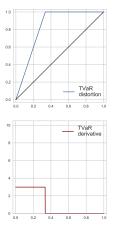


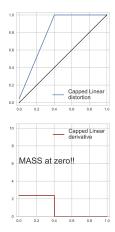
Section 4: Example Distortion Functions

Proportional Hazard, Capped Loglinear and Linear Yield

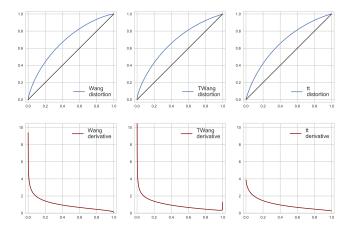


TVaR and Capped Linear



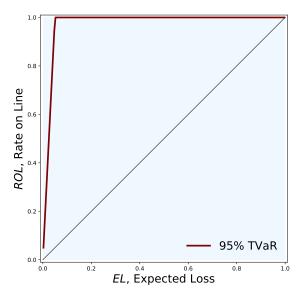


Wang, *t*-Wang, and *tt*



Section 5: TVaR Example

Distortion Function Behind TVaR



- Only events in the top 1-p percentile can occur
- TVaR-Person regards events smaller than VaR_p as **impossible**
- g'(x) = 0 for these smaller losses
- Big Honking Problem: Does TVaR-Person give away coverage below VaR_p?

- Only events in the top 1-p percentile can occur
- TVaR-Person regards events smaller than VaR_p as **impossible**
- g'(x) = 0 for these smaller losses
- Big Honking Problem: Does TVaR-Person give away coverage below VaR_p?
- VaR-person regards all events as equal to VaR_p
- That is a BHP: free cover above VaR_p

Does TVaR-Person give away coverage below VaR_p?

- Partial-loss only cover, paying only for losses in layer: free
 - TVaR-person's simulations do not include any partial losses
 - They do not believe partial losses possible
 - They would not understand demand for product
 - Partial-loss only covers are not actually sold

Does TVaR-Person give away coverage below VaR_p?

- Partial-loss only cover, paying only for losses in layer: free
 - TVaR-person's simulations do not include any partial losses
 - They do not believe partial losses possible
 - They would not understand demand for product
 - Partial-loss only covers are not actually sold
- For traditional layer, paying full limit losses for over-the-top: price
 - > expected loss
 - All TVaR-person's simulated losses ≥ VaR_p
 - All simulated losses are full limit losses
 - TVaR-person premium $yS(a) = y \times 1 = y =$ limit > expected loss to layer

Appendix A: Properties of Risk Measures

Translation Invariance (TI)

- Lowering a loss by a fixed, certain amount a lowers risk by the same amount: $\rho(X-a)=\rho(X)-a$
- Requires
 - ρ denominated in dollars, so $\rho(X)-a$ makes sense
- Examples
 - Expected value
 - VaR, TVaR
 - Scenario loss
- Rules out
 - Standard deviation, variance, Var(X + a) = Var(X)
 - All higher central moments
 - EPD
 - Probability of downgrade
 - Capital adequacy ratio

Monotonicity (MON)

- The more I owe the worse it is: if $X \geq Y$ for all outcomes then $\rho(X) \geq \rho(Y)$
- Equivalently, if $X \geq 0$ for all outcomes then $\rho(X) \geq 0$
- Examples
 - Expected value
 - VaR, TVaR
- Rules out
 - Standard deviation, e.g. uniform(0,1) < 1 but sd(uniform) > 0
 - Other central moments

Positive Homogeneity or Scaling (PH)

- Scales, $\rho(\lambda X) = \lambda \rho(X)$ for all $\lambda > 0$
- Highly dodgy: ask LTCM; unclear meaning of λX
- Examples
 - VaR
 - SD
 - Scenario loss
- Rules out
 - Variance

Sub-Additivity (SA)

- Respect diversification: $\rho(X+Y) \leq \rho(X) + \rho(Y)$
- Not without controversy, regulators find too much diversification
- Examples
 - Expected value
 - TVaR
- Rules out
 - VaR (because of thick tails or weird dependency structure)
 - Variance

Coherent (COH)

- Translation invariance, monotonic, positive homogeneous, sub-additive together called a coherent risk measure
- (TI, MON, PH, SA) \iff (COH)
- Examples
 - TVaR
 - Average of TVaRs at different thresholds
 - Worst of specified set of scenarios (Lloyds RDS)
- Rules out
 - Variance
 - VaR

Law Invariant (LI)

- If loss outcome contains all relevant information to determine risk then ρ is called law invariant (LI)
- LI means the risk only depends on the distribution F of X
 - Makes sense: an entity's risk of insolvency only depends on its distribution of future change in surplus—the cause of loss is irrelevant to solvency
 - May not make sense: a dollar of loss from Florida hurricane is more expensive to transfer than a dollar from non-cat auto liability
 - Suitability depends on application
- LI is shorthand way to tailor events to entity's actual losses rather than common objective events
 - What is relevant to me?
- Examples
 - VaR, TVaR, SD
- Rules out
 - Scenarios

Comonotonic Additive (CA)

- Two random variables X and Y are **comonotonic** if either
 - $(X(\omega_1) Y(\omega_1))(X(\omega_2) Y(\omega_2)) \ge 0$ for all $\omega_1, \omega_2 \in \Omega$,
 - i.e. samples from $\left(X,Y\right)$ lie on an upward sloping line, or equivalently
 - X=h(Z) and Y=h(Z) for an increasing function h and third random variable Z
- If X and Y have quantile functions q_X and q_Y and given a uniform variable U, $(q_X(U), q_Y(U))$ is a comonotonic bivariate distribution with marginals X and Y
- If X and Y are comonotonic then $q_{X+Y} = q_X + q_Y$
- A risk measure is comonotonic additive (CA) if $\rho(X+Y) = \rho(X) + \rho(Y)$ whenever X, Y are comonotonic
- CA implies PH: $\rho(2X)=\rho(X+X)=\rho(X)+\rho(X)=2\rho(X)$ etc.
- Examples
 - VaR, TVaR
- Rules out
 - Scenarios

Appendix B: Distortion Function and Integrals

Details of Distortion Functions

Distortion	Parameters	g'(0)	Formula
Proportional Hazard Capped Log-linear	$b \le 1$ a, b, 0 < b \le 1	Unbounded Unbounded	$g(s) = s^{b}$ $g(s) = \min(1, \exp(a + b \log(s)))$
Linear Yield	r_o, r_K	Bounded	$g(s) = \frac{r_o + s(1 + r_K)}{1 + r_o + r_K s}$
TVaR	$\alpha \in [0, 1]$	Bounded	$g(s) = \min(1, s/(1-\alpha))$
Capped Linear	a, b	Mass	$g(s) = \min(1, a + bs)$
Wang	λ	Unbounded	$g(s) = \Phi(\Phi^{-1}(s) + \lambda)$
t-Wang	λ, df	Invalid	$g(s) = t_{df}(\Phi^{-1}(s) + \lambda)$
<i>t-t</i>	λ, df	Unbounded	$g(s) = t_{df}(t_{df}^{-1}(s) + \lambda)$

Table 3: Parameters and Definitions of Distortion Functions

- Images show t-Wang distortion is not concave and hence does not define a coherent risk measure
- Capped linear a.k.a. linear