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Section 1: Definition and Examples
of Risks Measures
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Risk Measures: Definition

A risk measure ρ associates a monetary amount ρ(X)
with a random financial outcome X so that

prefer X to Y ⇐⇒ ρ(X) ≤ ρ(Y )
• Risk measure ρ(X) represents

• The assets required to credibly promise to pay X or
• A financial measure of the pain suffered by assuming X

• Insurance view: bigger ρ(X) corresponds to greater risk
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Risk Measures: Warning

Generally accepted usage means
• A risk measure determines assets and not capital

• A risk measure is not a measure of economic capital

• The risk of a certain liability with present value of a is a even though
the economic capital is zero
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Two Favorite Risk Measures

Value at Risk (VaR)
• VaRp(X)= percentile = F−1(p) = quantile = q(p)

• p close to 1 worst for losses
• Advantages: always finite
• Disadvantages: dodgy with respect to diversification

• VaRp(X) is the N(1− p)th largest observation from a sample of N
simulated events
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Two Favorite Risk Measures

Tail VaR (TVaR)
• TVaRp(X) = conditional average of the worst 1− p outcomes

= 1
1− p

∫ 1

p

q(p)dp

• p close to 1 worst for losses
• p = 0 corresponds to expected loss
• p = 1 corresponds to least upper bound of losses
• Advantages: respects diversification
• Disadvantages: not always finite

• Also known as ES, AVaR, CVaR, CTE; there are some technical
differences for non-continuous X

• TVaRp(X) is the average of the largest N(1− p)th observations
from a sample of N simulated events
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Section 2: Distortion Function and
Spectral Measures Recap
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Distortion Functions Price Thin Layers

Simplifying idea
• Break pricing problem into sub-problems of pricing thin layers
• Add!

Why simplifying?
• Thin layers only have total losses, no partial losses

• Risk of thin layer completely described by one number, called
• Exceedance probability (EP) S, or
• Probability of attachment, or
• Expected loss (EL)
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Distortion Functions Price Thin Layers

Linking risk and price
• Price of thin layer therefore also described by one number, called

• Rate-on-line (ROL), or
• Risk adjusted or distorted probability, or
• State-price

• Distortion function g : thin layer risk 7→ price captures relationship
between risk and price

• g is a function [0, 1]→ [0, 1]
• Risk averse implies g(s) ≥ s for all s ∈ [0, 1]
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Distortion Function to Risk Measure

• Associate a risk measure ρg to a distortion function g by analogy
with E(X)

E(X) =
∫ ∞

0
S(x)dx

=
∫ ∞

0
xf(x)dx

=
∫ 1

0
F−1(p)dp

ρg(X) =
∫ ∞

0
g(S(x))dx

=
∫ ∞

0
xg′(S(x))f(x)dx

=
∫ 1

0
F−1(p)g′(1− p)dp

• Function g′ on lower right measures care/care-more along the risk
spectrum p, hence spectral risk measure

• E(X) corresponds to ρg with g(s) = s the identity
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Total Risk: Summing Over Thin Layers Using g(S(x))
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Beware. . .
∫ ∞
0
xf(x)dx =

∫ ∞
0
S(x)dx

But. . . generally for 0 < a <∞
∫ a

0
xf(x)dx 6=

∫ a

0
S(x)dx

• The right hand side includes a full limit loss

• The left hand side does not
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Section 3: Properties of Risks
Measures
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Properties of Risk Measures

Property Meaning

Translation invariance adding cash exactly lowers risk

Monotone more loss =⇒ more risk

Positive homogeneous scale irrelevant; subtle and insidious

Sub-additive mergers do not increase risk

Law invariant risk only depends on loss, not cause

Comonotonic additive no diversification =⇒ no diversification credit
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Properties of Risk Measures

• Coherent means all of
• Translation invariant
• Monotone
• Positive homogeneous
• Sub-additive

• Convex
• Coherent without positive homogeneity (better)
• Risk of weighted average ≤ weighted average of risk

See Appendix A for details
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Properties of Distortion Functions

Correspondence between properties of ρg and g

Property of ρg Property of g

Translation invariance g(0) = 0, g(1) = 1

Monotone g is increasing

Positive homogeneous True for all g

Sub-additive g is concave

Law invariant True for all g

Comonotonic additive True for all g
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Correspondence between properties of ρg and g

• g is concave (blue)
• bows up above diagonal
• g′ decreasing
• care-less about smaller,

higher probability, losses
• g′(1− p) is the state price

density of the p = F (x)
percentile loss,
ρg(X) =

∫
xg′(S(x))f(x)dx

• g maps EL to ROL, objective
probability to risk adjusted
probability, “P to Q”
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Section 4: Example Distortion
Functions
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Proportional Hazard, Capped Loglinear and Linear Yield
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TVaR and Capped Linear
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Wang, t-Wang, and tt
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Section 5: TVaR Example
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Distortion Function Behind TVaR
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TVaR-Person View of the World

• Only events in the top 1− p percentile can occur

• TVaR-Person regards events smaller than VaRp as impossible

• g′(x) = 0 for these smaller losses

• Big Honking Problem: Does TVaR-Person give away coverage
below VaRp?

• VaR-person regards all events as equal to VaRp

• That is a BHP: free cover above VaRp
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TVaR-Person View of the World

Does TVaR-Person give away coverage below VaRp?
• Partial-loss only cover, paying only for losses in layer: free

• TVaR-person’s simulations do not include any partial losses
• They do not believe partial losses possible
• They would not understand demand for product
• Partial-loss only covers are not actually sold

• For traditional layer, paying full limit losses for over-the-top: price
> expected loss

• All TVaR-person’s simulated losses ≥ VaRp

• All simulated losses are full limit losses
• TVaR-person premium yS(a) = y × 1 = y = limit > expected loss to

layer
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Appendix A: Properties of Risk
Measures
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Properties of Risk Measures

Translation Invariance (TI)
• Lowering a loss by a fixed, certain amount a lowers risk by the same

amount: ρ(X − a) = ρ(X)− a
• Requires

• ρ denominated in dollars, so ρ(X)− a makes sense
• Examples

• Expected value
• VaR, TVaR
• Scenario loss

• Rules out
• Standard deviation, variance, Var(X + a) = Var(X)
• All higher central moments
• EPD
• Probability of downgrade
• Capital adequacy ratio
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Properties of Risk Measures

Monotonicity (MON)
• The more I owe the worse it is: if X ≥ Y for all outcomes then
ρ(X) ≥ ρ(Y )

• Equivalently, if X ≥ 0 for all outcomes then ρ(X) ≥ 0
• Examples

• Expected value
• VaR, TVaR

• Rules out
• Standard deviation, e.g. uniform(0, 1) < 1 but sd(uniform) > 0
• Other central moments
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Properties of Risk Measures

Positive Homogeneity or Scaling (PH)
• Scales, ρ(λX) = λρ(X) for all λ > 0
• Highly dodgy: ask LTCM; unclear meaning of λX
• Examples

• VaR
• SD
• Scenario loss

• Rules out
• Variance
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Properties of Risk Measures

Sub-Additivity (SA)
• Respect diversification: ρ(X + Y ) ≤ ρ(X) + ρ(Y )
• Not without controversy, regulators find too much diversification
• Examples

• Expected value
• TVaR

• Rules out
• VaR (because of thick tails or weird dependency structure)
• Variance
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Properties of Risk Measures

Coherent (COH)
• Translation invariance, monotonic, positive homogeneous,

sub-additive together called a coherent risk measure
• (TI, MON, PH, SA) ⇐⇒ (COH)
• Examples

• TVaR
• Average of TVaRs at different thresholds
• Worst of specified set of scenarios (Lloyds RDS)

• Rules out
• Variance
• VaR
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Properties of Risk Measures

Law Invariant (LI)
• If loss outcome contains all relevant information to determine risk

then ρ is called law invariant (LI)
• LI means the risk only depends on the distribution F of X

• Makes sense: an entity’s risk of insolvency only depends on its
distribution of future change in surplus—the cause of loss is irrelevant
to solvency

• May not make sense: a dollar of loss from Florida hurricane is more
expensive to transfer than a dollar from non-cat auto liability

• Suitability depends on application
• LI is shorthand way to tailor events to entity’s actual losses rather

than common objective events
• What is relevant to me?

• Examples
• VaR, TVaR, SD

• Rules out
• Scenarios
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Properties of Risk Measures

Comonotonic Additive (CA)
• Two random variables X and Y are comonotonic if either

• (X(ω1)− Y (ω1))(X(ω2)− Y (ω2)) ≥ 0 for all ω1, ω2 ∈ Ω,
i.e. samples from (X,Y ) lie on an upward sloping line, or equivalently

• X = h(Z) and Y = h(Z) for an increasing function h and third
random variable Z

• If X and Y have quantile functions qX and qY and given a uniform
variable U , (qX(U), qY (U)) is a comonotonic bivariate distribution
with marginals X and Y

• If X and Y are comonotonic then qX+Y = qX + qY
• A risk measure is comonotonic additive (CA) if
ρ(X + Y ) = ρ(X) + ρ(Y ) whenever X, Y are comonotonic

• CA implies PH: ρ(2X) = ρ(X +X) = ρ(X) + ρ(X) = 2ρ(X) etc.
• Examples

• VaR, TVaR
• Rules out

• Scenarios 33



Appendix B: Distortion Function and
Integrals
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Details of Distortion Functions

Table 3: Parameters and Definitions of Distortion Functions

Distortion Parameters g′(0) Formula

Proportional Hazard b ≤ 1 Unbounded g(s) = sb

Capped Log-linear a, b, 0 < b ≤ 1 Unbounded g(s) = min(1, exp(a+ b log(s)))

Linear Yield ro, rK Bounded g(s) =
ro + s(1 + rK)
1 + ro + rKs

TVaR α ∈ [0, 1] Bounded g(s) = min(1, s/(1− α))
Capped Linear a, b Mass g(s) = min(1, a+ bs)
Wang λ Unbounded g(s) = Φ(Φ−1(s) + λ)
t-Wang λ, df Invalid g(s) = tdf (Φ−1(s) + λ)
t-t λ, df Unbounded g(s) = tdf (t−1

df
(s) + λ)

• Images show t-Wang distortion is not concave and hence does not define a coherent risk
measure

• Capped linear a.k.a. linear
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